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Abstract
We present two methods to numerically determine the position of User Equipment
communicating to a cellular tower in predefined area, without any privileged access
over the cellular network except and given enough measurements of the network
delay. Moreover, we outline a framework on how to perform the measurements and
correctly plug them into the numerical methods.
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1 Introduction

1 Introduction

1.1 Glossary and Notations
We will be using the following terminology and notations.

• User Equipment (UE)
The term 3G refers to the third generation cellular network technology, which
superseded the previous network generation 2G, proving for faster network
speeds. The two most prominent standards are UMTS and and CDMA2000.
As defined in the UMTS standard1, we will refer to User Equipment (UE) as
a SIM and device using that SIM to transmit information over the 3G cellular
network, in most cases the device it’s a mobile phone or an IOT device. In the
context of this article it’s not important if the UE is communicating through
the 2G, 3G, 4G or 5G network, so this term will be used for any of those
networks.

• Tower and Base Station (BS)
By tower or cellular tower, we refer to the any device that is the entry point
for UE to the cellular network, that it is the first device the UE sends a signal
to when accessing the cellular network; a cellular tower, properly, is the most
common device that does this, but it’s not the only one. In this context we
use this term in more general fashion, a more appropriate term might be base
station, but it refers to the devices specifically on land.

• Mobile Core Network (MCN)
A generic term to define the set of interconnected servers of the cellular network
that route messages to and from the aggregations points.

• TDoA (Time Difference of Arrival)

1.2 Description of the problem
Governments track people’s activity and behaviors on a daily basis by gathering
incredibly large amounts of data, one way this is done is through the cellular network,
as reported, for example, by the newspaper The Guardian in [13], following the
revelations of the world-famous whistleblower Edward Snowden.
Using numerical methods like TDoA it’s possible to track a speaking person location
in a room using microphones and measuring the time of arrivals of the sound waves
to the microphones. We are interested into extending this idea to cellular towers,
that is determining a person location with UE, by measuring the times of arrivals
from their UE to our receivers. In this context we consider the following players:

• Victim
A user of the cellular network, with UE, whose location is to be discovered.

• Attackers
The group of individuals, without any special access to the cellular network,
determining the location of the victim.

• Towers
1See for example [WSA03, p. 4.2]
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2 Physical Description

The first device the UE connects to when accessing the cellular network, typ-
ically, a land base station.

This problem is easy to solve when attackers control the towers, as in the case of
governments or the network operators themselves; our problem assumes that no
special access to the cellular network is required to solve this localization problem.

1.2.1 Scope

To solve the outlined problem, we describe in detail its physical model, then we
formalize it into a general mathematical model; finally we define a less general
model that we solve numerically. We will also point to useful resources on how to
gather necessary data to perform a POC attack, we developed some of those tools.

2 Physical Description
The cellular network is an interconnected set of devices that operates under different
technologies, namely 2G, 3G, etc.; we provide a technology-independent description,
as in [Sim23].

2.1 Cellular network architecture
The following subjects are present:

• User Equipments
• Cell towers (or base stations)
• Aggregation points
• Mobile Core Network

And they are structured like follows.
• Each UE can be connected with only one tower at time.
• Each tower is connected with one and only one aggregation point.
• Each aggregation point is connected to the mobile core network.
• Every couple of subjects whose connection state is not stated above, are not

connected with each other.2
• If it’s possible to communicate from one subject to another, it’s possible also

the opposite.
In order for a information to travel from a user A to a user B, it is necessary a
routing algorithm.

2.2 The routing algorithm
If Alice and Bob are users of the cellular network and Alice wants to send a message3

to Bob, the following protocol is established.
1. Alice lists towers reachable by her UE and chooses the tower Ta with the best

signal
2. Alice sends her (encrypted) message, directed to Bob, to the tower Ta

2For example, we didn’t say that towers are connected with each other, then they are not.
3In the general meaning of "message".
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3 Mathematical Model

3. The tower Ta sends the message to its aggregation point Aa

4. Aa sends the message to the MCN
5. The MCN identifies the aggregation point Ab such that the tower Tb, which

Bob is using, is connected to Ab

6. The MCN sends the message to Ab

7. Ab sends the message to Tb

8. Tb sends the message to Bob

Figure 1: Communication of two users in the Cellular Network (Schematic)

The network structure is also represented in the Figure 1.

3 Mathematical Model
From the physical description, we derive a simpler mathematical model.

3.1 Assumptions
From now on when we talk about communication between towers, attackers or the
victim, we mean the sending/receiving of a fixed message, when we use the term
"between" when talking about a communication we’re not discriminating over the
direction of the communication, it is irrelevant.
Let s ∈ N a number that will have a practical meaning in section 4. We make the
following assumptions:

1. The victim doesn’t move during the attack.
2. The mean communication time between two nodes of the graph over a number

of samples s is constant over time.
3. The mean communication times, over s samples, between the towers are

known.
4. The geographical positions of the towers are known.
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3 Mathematical Model

5. The communication time between a UE and a tower is the distance between
them divided by the speed of light in the air c.

6. The victim connects to only one tower and it is the closest to the victim
position.

7. The mean travel times can be "split up" over a path: if i, j ∈ W and exists
k ∈ W such that (i, k), (k, j) ∈ E and i, j, k ̸= N ,4 then

τ(i, j) = τ(i, k) + τ(k, j) .

3.2 Model definition
Let V be the victim and s as described in subsection 3.1. Let T1, . . . , Tnt and
A1, . . . , Ana be respectively the towers and the attackers, where nt, na ∈ N. Let N
represent the "rest of the network", that is MCN and the aggregation points that
allow the towers to exchange information with each other.
We formalize the network structure into a directed weighted graph5 G = (W, E, τ),
where its nodes are W = {T1, . . . , Tnt , A1, . . . , An, V, N} and its edges are E. τ :
W 2 → [0, ∞) is the function such that τ(i, j) is the mean of s samples of the times
of communication between two nodes of the graph according to the algorithm in
subsection 2.2, it is well defined for Assumption 2. τ is called mean travel time over
s samples or simply mean travel time.
Following the specifications in subsection 2.1, we have

∃ ! iV ∈ {1, . . . , nt} : (V, TiV
) ∈ E

(Ti, N) ∈ E ∀ i ∈ {1, . . . , nt}

(Ti, Tj) /∈ E ∀ i, j ∈ {1, . . . , nt}

(i, j) ∈ E =⇒ (j, i) ∈ E .

Without loss of generality, we can suppose that no more than one attacker is con-
nected to the same tower because all the attackers have the same role and we consider
them to be equivalent, also since the attackers must be connected to some tower to
perform the attack, there must be at least one tower for each attacker. So na ≤ nt

and
∀ i ∈ {1, . . . , na} ∃ ! j ∈ {1, . . . , nt} : (Ai, Tj) ∈ E ,

Without loss of generality, we can suppose that the attackers don’t communicate
with each other during the attack, because it’s not useful for the attack, so

(Ai, Aj) /∈ E ∀ i, j ∈ {1, . . . , na} ,

moreover the attackers don’t communicate with the victim directly, so

(Ai, V ), (V, Ai) /∈ E ∀ i ∈ {1, . . . , na} .

4To understand this conditions, see subsection A.2.
5G is not properly a weighted graph because τ should be defined on E, while it’s defined on a

superset of it, W 2, but τ |E is the function we’re looking for, so it’s just a formality, τ has more
properties than a simple weight function.
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3.3 Model Solution
The solution method is based on solving a TDoA inspired problem, which will be
described more later; in this section we calculate the mean time of communication,
over s samples, from the victim V to an attacker Ai, that is τ(V, Ai), and show that
τ(V, Ai) − τ(V, Aj) depends on the geographical position of the victim, where j ̸= i.
For Assumption 7, we have

τ(V, Ai) = τ(V, TiV
) + τ(TiV

, TAi
) + τ(TAi

, Ai) =

= d(V, TiV
)

c
+ τ(TiV

, TAi
) + d(TAi

, Ai)
c

,

which we can calculate because of Assumption 3, Assumption 4, and Assumption 5.
Therefore

τ(V, Ai) − τ(V, Aj) = τ(TiV
, TAi

) + d(TAi
, Ai)

c
− τ(TiV

, TAj
) −

d(TAj
, Aj)

c
=

τ(TiV
, TAi

) − τ(TiV
, TAj

) +
d(TAi

, Ai) − d(TAj
, Aj)

c
.

So the last term depends in fact on the position of the victim because of Assump-
tion 6, due to the term TiV

, but, unfortunately, it does not depend on the distance
of the victim from the tower (while τ(TiV

, TAi
) and τ(TiV

, TAj
) do). This implies

that our results will be dependent on the victim position in the sense that they will
depend on the tower the victim connects to.
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4 POC attack
In order to perform a proof of concept attack, we need to satisfy the assumptions
in subsection 3.1:

• The Assumption 1 is plausible if the attack happens in a small amount of time
or the victim moves very slowly or doesn’t move at all during the attack.

• The Assumption 2 and Assumption 3 are satisfiable if s is a large enough
number determined experimentally, so that the error on its measure is known
and negligible.

• The Assumption 4 is satisfiable by finding the positions of towers on an open
database like OpenCellID6, that is crowdsourced but not very updated in some
areas. For more precise/reliable results it’s possible to take measurements
autonomously using cell data collector apps, like Tower Collector, that is an
open source app for Android.

• The Assumption 5 is plausible due to the physics of the electromagnetic radi-
ation and if the UE communicates with the tower without any delay.

• The Assumption 6 is plausible in most cases. In reality the tower that the UE
chooses to connect is the one with the best signal, that, most of the times, is
the one that is located the closest to the UE.7

• The Assumption 7 is plausible if there are no delays in a node k after a message
was received from a node i and has to be sent to a node j.

4.1 Measuring times
As in subsection 3.3, to apply TDoA and solve the problem numerically, the attackers
need to measure the communication time from the victim to the i-th attacker.
The attack we propose is plausible in an area accessible by the attackers, that is
small enough to be effectively mapped by the attackers. The attack works as follows,
for simplicity we suppose the attackers are just A1 and A2:

1. The attackers agree on a message m to send over the cellular network.
2. The attackers agree on a number of samples s that is big enough to get constant

results when averaging the measurements of the network delays between tower
communications, the determination of s is guided by experimentation and
efficiency needs.

3. The entire area is scanned for towers using map data collector tool, the at-
tackers get the number of accessible towers in the area nt and the cell ids.

4. By triangulating the tower positions8 or looking on open databases if available,
the attackers get the tower positions T1, . . . , Tnt .

5. For each couple of towers (Ti, Tj)
(a) A1 connects to Ti and A2 connects to Tj

6Also https://github.com/beacondb/beacondb could be used.
7This assumption could be substituted by The tower the victim connects to is one with the

best signal for the victim., but then it’s necessary to use one of the aforementioned measurements
methods or open databases to create a "signal map" where every unit of the map has the associated
tower with the strongest signal.

8A RSSI-based localization technique can be used in this case, because the attackers measure
the tower signal strengths.

6

https://opencellid.org/
https://github.com/zamojski/TowerCollector


4 POC attack

(b) A1 sends s times the message m to A2, they can get τ(Ti, Tj).9
(c) A2 sends s times the message m to A1, they can get τ(Tj, Ti).

The complexity, of communication measurements of size s, of this algorithm is n2
t , if

one assumes that τ(Ti, Tj) = τ(Tj, Ti), the complexity is n2
t

2 . It’s possible to reduce
the complexity further with different assumptions, but they wouldn’t work with our
TDoA solution, as explained in subsection A.2.

4.2 Silent SMS
In our experiments we measured some real network delay values and we averaged
them. The attackers need to agree on a message m and a number of samples
s, for our measurements we used an SMS with the content "test" and we sent
s = 50 of those SMS, in order to make the process fast and without buying expen-
sive equipment, we provide a script available at https://codeberg.org/frollo/
cellular-network-geolocalization, that uses an Android phone with Android
SMS Gateway app installed. In real case scenario it could be useful to send a Silent
SMS, that is an SMS that gives no notification to the user that receives it,10 making
it ideal of an undetectable attack.

4.3 Our measurements
In our experiments we mapped the area of the Monte Sant’Angelo (MSA) university
campus, it took about 3 hours in total, we applied the algorithm with complexity
n2

t

2 . Even though our devices detected more than 10 towers, but 3 towers had a very
strong signal that made it very difficult for our devices to steadily connect another
tower. In total we measured the delays between 4 towers, we believe that with better
hardware or software11 it’s possible to measure more towers more easily and increase
the measured times accuracy.

9The attacker A2 measures

τ(A1, A2) = τ(A1, Ti) + τ(Ti, Tj) + τ(Tj , A2) ,

A2 can calculate numerically τ(A1, Ti) and τ(Tj , A2) because the positions of the towers are known
and because of Assumption 5 and subtract them to the measured value.

10We used an open source app called Silent SMS Detector that sends and detects silent SMS,
but it doesn’t allow to send SMS in bulk and get more accurate times for measurements.

11Android has in place some limitation to system log access, that made it more difficult to get
precising timings, moreover we didn’t find a way to force Android to manually switch to a reachable
cell tower of our choice. Probably iOS is much worse.
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5 Mathematical methods

5 Mathematical methods
In this section, we focus on the mathematical methods used to solve the problem
described previously. These methods can be applied to solve a general localization
problem, even one arising from a different physical context. For this reason, we use
terms such as signal detectors and signal source; we follow some of mathematical
results as given in [Zha21] and [BH].
The methodology used in this work can be defined as a TDoA-inspired methodology.
This localization technique is applicable in a two-dimensional environment where
the positions of a set of signal detectors are known, and each detector is capable
of measuring a physical quantity related to the signal emitted by the source. For
instance, the detectors may measure the exact time when they detect the signal,
the signal’s intensity, or other related quantities. The key point is that the physical
quantity measured by each detector is the same for all detectors.
Moreover, the relationship between the chosen physical quantity and the source’s
location is known, meaning that we have a model that relates this physical quantity
to the source position. Based on this, a set of candidate positions is established
within the localization area. For each candidate position, the model is used to
predict the values that the detectors would measure if the signal were emitted from
that position. Once the signal source emits the signal, the detectors record the
actual values corresponding to the signal. Then, based on the predicted values from
the model for each candidate position and the measured values, a probability is
assigned to each candidate location, representing the likelihood that the source is
at that position. The source is then estimated to be at the candidate position with
the highest probability.
In this case, the method is TDoA-inspired because the physical quantity (measured
or estimated) is the signal reception times, from which the Time Difference of Arrival
(TDoA) is calculated for each pair of detectors.
This section is dedicated to the mathematical methods used to assign a likelihood
value to each candidate position. To achieve this goal, we need to construct an
appropriate system of linear equations and solve the corresponding least squares
problem.

5.1 Linear system construction
To solve the localization problem, we first need to construct a system of linear
equations:

Ax = b

where:
• A is a P × M matrix, where P is the number of detector pairs and M is the

number of candidate positions.
• b is a vector of length P .

The entries in the matrix A are the predicted TDoA values for each pair of detectors
p = (i, j) at each candidate position r(k):

Ap,k = ∆tij(r(k)) = ti(r(k)) − tj(r(k)).

8



5 Mathematical methods

The entries in the vector b are the measured TDoA values for each pair of detectors
p = (i, j):

bp = ∆tmeas
ij = tmeas

i − tmeas
j .

Note that both the entries of A and the coefficients of b are given in the problem. In
fact, for the entries of A, the signal arrival time from the k-th candidate position to
the i-th detector is estimated through the model. On the other hand, the coefficients
of b come from real measurements.

5.2 Least Squares Problem resolution
A solution x of the corresponding least squares problem

min
x∈RM

∥Ax − b∥

can be interpreted as a weight vector, where each component xk indicates the like-
lihood that the source is at the candidate position rk.
When you solve the least squares problem, you are effectively minimizing the error
between Ax and b. For each x ∈ RM , Ax is a linear combination of the columns
of A weighted by the scalars xk. Since the k-th column of A contains the predicted
TDoA values for the k-th candidate position, the k-th component xk represents how
much the predicted TDoA values for the candidate position rk contribute to the
minimization of the error, that is, how well these predicted values fit the measured
data.
In the context of localization, the solution vector x can be thought of as a measure
of the likelihood of the source being at each candidate position. The component of
x that has the highest value corresponds to the candidate position that is the most
likely location for the sound source.

5.3 Solution of the Least Squares Problem using the Moore-
Penrose Pseudoinverse

To solve the least squares problem

min
x∈RM

∥Ax − b∥

we use the Moore-Penrose pseudoinverse of the matrix A. One solution can be
obtained by computing the pseudoinverse A† and multiplying it by the measured
data vector b:

xpinv = A†b

However, the matrix A is typically ill conditioned. This implies that the system is
ill posed, which means that small perturbations δb in the data can result in large
changes δx in the solution.
Because of ill-posedness of the system, we need to use some regularization technique.
In this case, we use the Tikhonov regularization.

9
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5.4 Tikhonov regularization
Tikhonov regularization consists of replacing the usual least squares problem

min
x∈Rn

∥Ax − b∥

with the penalized problem
min
x∈Rn

∥Ax − b∥2 + λ2∥x∥2

for an appropriate choice of the parameter λ.
For each λ ̸= 0, the penalized problem has a unique solution given by:

xλ =
(
AT A + λ2I

)−1
AT b

The choice of λ modifies the sensitivity of the solution to perturbations on b. This
means that:

• A larger λ increases stability (i.e., reduces the amplification of δb).
• A smaller λ makes the method closer to the unregularized problem.

It seems that we are interested in a value of λ as large as possible to increase the
stability of the solution. Unfortunately, λ cannot be too large, because by solving
the penalized problem, we accept a suboptimal x that gives a slightly larger norm
∥Ax − b∥. This means that a larger λ may bias the solution away from the true
least squares answer.
A value of λ is optimal if the solution to the corresponding penalized problem is
close to the solution of the least squares problem (i.e the residual norm is small)
and improves the stability of the solution. In other words, the optimal λ guarantees
the optimal balance between fitting the data and maintaining a stable solution. We
cannot prioritize the stability of the solution because we must preserve the meaning
of the solution, which is a vector where each component represents the likelihood
that the signal source is at the corresponding candidate position. To achieve this, we
need to obtain a solution that is close to the solution of the least squares problem,
which, as mentioned earlier, has this meaning. In this way, for an appropriate value
of λ, we can still interpret the solution xλ as a measure of the likelihood of the
source being at each candidate position.

5.5 Choice of λ Using the L-Curve Method
The selection of the regularization parameter λ is crucial for balancing the trade-
off between the stability of the solution and its proximity to the true least squares
solution. One effective method to determine the optimal value of λ is the L-curve
method. The L curve is a graphical representation: it’s about to create a plot with
log ∥Axλ − b∥ on the horizontal axis, and log ∥xλ∥ on the vertical axis, sampled over
a wide range of λ values (varying over orders of magnitude).
By plotting these two quantities for different values of λ, the L-curve forms a char-
acteristic "L" shape. The corner of the L-curve corresponds to the point of optimal
regularization, where the solution transitions from fitting the data well (small resid-
ual) to a more regularized, stable solution (smaller solution norm). The optimal
value of λ is chosen at this corner, as it represents the best compromise between
data fidelity and solution stability.
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6 Computational methods
This section will be dedicated to the computational methods used to numerically
solve the problem discussed in this work.
For this reason, we will use the specific terminology of the problem we aim to solve.
In this context, the attackers play the role of signal detectors, while the victim is
the signal source.
We have implemented the code in the MATLAB programming language and it is
freely accessible at https://codeberg.org/frollo/geolocating-ue-through-the-cellular-network-numerically

6.1 Environment and Data Simulation
• The first task of this code is to represent the problem in a two-dimensional

environment. In fact, the positions of the towers and the attackers are initially
provided in geographic coordinates (latitude and longitude). In other words,
a more or less extensive geographical area (Italy, Campania, MSA university
campus) is considered, where the geographical positions of at least 4 towers
and the same number of attackers are known. Therefore, all the geographic
coordinates are converted to cartesian coordinates using the projfwd function.
Specifically, the function projfwd(proj, lat, lon) converts the geographic
coordinates (latitude and longitude) into cartesian coordinates (x, y) based
on the projection defined by proj. proj defines a map projection, which
dictates how the Earth’s curved surface is projected onto a flat 2D plane. We
use the EPSG:6876 projection, that projects an surface that covers the entire
Italy, this projection preserves the distance between two points with good
approximation.

• The second step of the algorithm is to discretize a portion of the previously
created cartesian plane into a grid, starting from a point chosen within the
localization area. The positions of this grid are the candidate positions for
the victim’s location, meaning known positions for which the TDoA values are
estimated using the time model.

• At this point, an undirected graph is created through a symmetric matrix
defined as follows: the nodes of the graph are all the players in our problem
(towers, attackers, candidate positions), so the matrix will be square with
dimension N , where

N = ntowers + nattackers + ncandidate_positions.

The entries of this matrix represent the connections between towers, attackers
and candidate position. Each attacker is connected to its closest tower, and
each candidate position is similarly connected to its closest tower. In terms of
matrix entries: the element G(idx1, idx2) is equal to 1 if idx1 corresponds to
an index of an attacker or a candidate position, and idx2 is the index of its
closest tower, or vice versa. All other components of G are zero.
This way, only relevant interactions between nodes are represented in the ma-
trix.
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• Then the algorithm constructs the matrix A, which means that the predicted
TDoA values for each attackers pair and for each candidate position are com-
puted.
In particular, for each candidate position rk and each attacker ai, the signal
arrival time from the candidate position to the attacker is calculated according
to the model. That is, by consulting the graph, the nearest tower to the
attacker and the nearest tower to the candidate position are identified, and
the signal arrival time is:

ti(rk) = d(ai, Tai
)

c
+ d(rk, Trk

)
c

+ comm(Tai
, Trk

)

where Tai
is the position of the tower nearest to attacker ai, Trk

is the position
of the tower nearest to the candidate position rk, and comm(Tai

, Trk
) is the

mean communication time between the two towers. Note that comm(Tai
, Trk

)
is a given data of the problem, stored in the code in an array where each
component represents the communication time between two towers.
Then the Time Difference of Arrival are computed and stored in A.

• To solve a numerical problem, we need the measured TDoA values for the
signal emitted from an unknown position. As described in subsection 4.3,
in the MSA scenario, we measured the tower delays and gathered the tower
positions, the rest of the data has been simulated.
The measured TDoA values are also simulated as follows: a position is fixed
within the localization area, it is transformed into cartesian coordinates on the
plane, and the TDoA values are calculated for each pair of attackers from the
model used for each candidate position. To simulate the data measurement,
Gaussian noise is added. That’s how we obtain the right-hand side vectors of
the linear system.

6.2 Inverse Problem solution
• The second part of the code is dedicated to the inverse problem solution.

First, we solve the Least Squares problem by computing the Moore-Penrose
pseudoinverse using the MATLAB function pinv. This function computes the
pseudoinverse based on Singular Value Decomposition of matrix A.
Subsequently, we determine the optimal value of λ in order to apply Tikhonov
regularization. According to mathematical methods explained previously, we
implemented L curve method by resolving multiple penalized problem with
different value of λ. So the optimal value of λ is established by finding corner
via maximum curvature.
At this point, we are ready to solve the penalized problem with the optimal
value of λ.
We plot a heatmap of the reconstructed likelihood over the candidate grid both
for the solution of Moore Penrose pseudoinverse and the solution obtained with
Tikhonov regularization and visualize the map, tower and attacker positions,
the true victim’s position.

• In the last part of the code, the noise level added to the vector of known terms
(b) is varied. For each noise level, both the least squares problem and the
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penalized problem (Tikhonov regularization) are solved in order to analyze
and study the stability of the two solutions.

7 Results

Our code is capable of running a an attack simulation in 3 different attack scenario:
MSA university campus, Campania and Italy. In this section, we will discuss the
numerical results obtained by running our code in the Campania setting. Specif-
ically, the code was executed by selecting the geographic locations of 4 towers in
Campania (from the sources mentioned previously), the geographic locations of 4
attackers and the victim’s geographic location.

We plot the heatmaps of the reconstructed likelihood based on the solution of the
least squares problem, the L-curve used to determine the optimal value of lambda,
and the heatmap of the reconstructed likelihood based on the solution of the penal-
ized problem with the optimal lambda value.

Figure 2: Heatmap of the LSP solution
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Figure 3: Heatmap of Tikhonov solution

Figure 4: L-curve

We present the plots related to the stability of the two methods.
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Figure 5: Stability of LSP

Figure 6: Stability of Tikhonov

First of all, one can note that both heatmaps Figure 2 and Figure 3 exhibit a
non-continuous distribution of the likelihood. This is due to the fact that each
candidate position is assigned to its nearest tower, and the vector of predicted TDoA
values for a candidate position depends solely on the tower it is connected to. As
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a result, two candidate positions connected to the same tower will have identical
columns in matrix A. Moreover, each component of the vector x measures how
well the predicted TDoA values (the column) for the corresponding position fit the
measured differences. Consequently, candidate positions assigned to the same tower
will result equally probable. In other words, the likelihood distribution over the
candidate positions follows their assignment to the towers, which is not continuous.
The second thing to note is that the two methods (Least Squares Problem and
Tikhonov regularization) exhibit almost identical behavior both in terms of heatmaps
and solution stability. The heatmaps graphically represent the two solutions xLSP
and xTikhonov_opt resulting from the execution of the algorithm. The similarity of
the heatmaps suggests that the two solutions are numerically close. In fact, it turns
out that ∥xLSP − xTikhonov_opt∥ = 0.08. From this, we can conclude that the value
of λopt selected by the algorithm (implementing L curve method) is a good value in
terms of data fitting.
However, from the similarity of solution stability (Figure 5 and Figure 6) the value
of λopt does not achieve the second goal of Tikhonov regularization, which is to
obtain a more stable solution with respect to data perturbations.
This is certainly unexpected from a theoretical and general perspective, but not in
the specific case, considering the results identified by the algorithm. In fact, in this
case, the matrix constructed with the input data is moderately ill-conditioned, and
consequently, the least squares problem is not as unstable as one would theoreti-
cally expect. This is confirmed from a numerical point of view: indeed, during the
execution of the algorithm, the smallest non zero singular value of the matrix A was
computed, which is found to be 3.5 × 101. This value is very important because it
provides an estimate of the perturbation on the solution x. Indeed, in general, let
σmin be the smallest non-zero singular value of the matrix A, it follows that

∥∆x∥ ≤ σ−1
min∥∆b∥

Therefore, since in this case σ−1
min is not a very large value (on the order of 10−2), we

can conclude that the perturbation on b is not significantly amplified.
On the other hand, it is expected that Tikhonov regularization will still improve the
stability of the solution. In this case, the numerical value of λopt identified by the
algorithm is 8.2×101. The reason why the stability of the solution does not improve
is that the value of λopt is of the same order of magnitude as the smallest non-zero
singular value of the matrix A. Indeed, now the perturbation of the solution is
related to the perturbation on the data as follows:

∥∆x∥ ≤ (2λopt)−1∥∆b∥.

Another confirmation that the matrix is moderately ill-conditioned is the plot of the
L-curve, which does not exhibit the typical and expected L-shape (Figure 4). In a
moderately ill-conditioned problem, the system does not amplify the noise signifi-
cantly, which means that the effect of increasing λ results in a more homogeneous
variation between the norm of the residual and the norm of the solution.
The algorithm provides the value of λ corresponding to the point of maximum
curvature, which is why it gives a value of λopt on the order of 101. However,
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by observing Figure 4, it is expected that by increasing λopt by a few orders of
magnitude, stability can be improved without significantly penalizing the residual
norm, which remains more or less similar.
This is what was done by multiplying λopt by 102.The following results were obtained:

Figure 7: Heatmap of Tikhonov with λ = λopt · 102

Figure 8: Stability of Tikhonov with λ = λopt · 102

It can be observed that the stability begins to slightly increase, but the heatmap is
similar to the previous ones. This means that the solution changes only marginally.
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Just to ensure that our algorithm correctly identified the value of λopt, we numeri-
cally modified the matrix A (essentially, we set the speed of propagation to 1 m/s),
resulting in a more ill-conditioned matrix. In this case, the L-curve exhibits the
typical L-shape.

Figure 9: L-curve with speed set to 1 m/s

8 Conclusion
We conclude this work with some considerations on the method used and sugges-
tions on how to improve it, based on the problems encountered during the solution
process. From the resolution of a specific case, it emerges that both methods return
a good overall solution because, in the heatmaps, the most probable positions are
concentrated around the true position of the victim. However, in both cases, the
estimated position cannot be considered accurate because, in the heatmap, there
are some equiprobable positions to the one returned in the output, but these are
geometrically closer to the true victim’s position. The reason lies in the fact that,
according to the mathematical model used, candidate positions associated with the
same tower are indistinguishable in terms of TDoA values. In this way, the accu-
racy of the solution obtained depends on the distribution of towers in the localization
area: if there are many towers and they are well distributed throughout the area, the
candidate positions associated with each tower are few. Consequently, the candidate
positions are more differentiated. This problem could be addressed, in principle, by
developing a more accurate TDoA value model that, for example, depends on the
distance from the position to the closest tower, in order to differentiate candidate
positions that connect to the same tower. We believe that it would be more effective
and easier to switch to another method entirely, for example ToA, could have been
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more suitable for our use case because it would preserve the distance of the victim
from the tower it is connected to.
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A Appendix 1: alternative mathematical models

A.1 A more general model
We propose the following, more general, model.

• We adopt Assumption 1, Assumption 2, Assumption 3, Assumption 4.
• τ , on an edge, can be modeled by 3 contributes. For every (i, j) ∈ E

τ(i, j) = σs(i, j) + τ̃(i, j) + σr(i, j) ∀ (i, j) ∈ E ,

where
– σs(i, j) is the mean sending time delay from the node i to the node j: this

is the mean time taken to the node i to start sending the message to the
node j.

– τ̃(i, j) is the mean physical travel time: this is the mean time required for
the message to travel from the node i to the node j, without interruptions.
In particular τ̃(U, TU), where U is a user of the cellular network (victim or
attacker) and TU is the tower it is connected to, is the distance between
U and TU divided by the speed of light in the air.

– σr(i, j) is the mean receiving time delay from the node i to the node j:
this is the mean time taken to the node j to finish the reception of the
message from the node i.

• The victim connects to only one tower and there is an algorithm to find the
tower given the victim position.

• The mean travel times can be "split up" over a path adding a delay for each
nodes the path goes through: if i, j ∈ W and exists k ∈ W such that
(i, k), (k, j) ∈ E, then

τ(i, j) = τ(i, k) + δk + τ(k, j) ,

where δk is the mean transfer delay of the node k and it is the time between
end of the receiving process from a node i with a pending message request to
another node j and the start of the sending process to the other node.12

We prove that the difference of times for TDoA still depend on the position of the
victim.

τ(V, Ai) = τ(V, TiV
) + δTiV

+ τ(TiV
, TAi

) + δTAi
+ τ(TAi

, Ai)

then

τ(V, Ai) − τ(V, Aj) = τ(V, TiV
) + δTiV

+ τ(TiV
, TAi

) + δTAi
+ τ(TAi

, Ai)−
− τ(V, TiV

) − δTiV
− τ(TiV

, TAj
) − δTAj

− τ(TAj
, Aj) =

= τ(TiV
, TAi

) − τ(TiV
, TAj

) + τ(TAi
, Ai) − τ(TAj

, Aj) .

12Since the GSM standards, towers use a mechanism called timing advance to take a bulk of
message at the same time, eve if the UEs are in different locations, so when the messages get to
the tower can be many and they are not all forwarded to the MBN, implying delay that depends
on the tower capacity and network load.
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This is enough to prove that difference of times depends on the position of the victim
tower and therefore on the position of the victim, so TDoA is applicable, but once
again we don’t get an explicit dependence from the distance of the victim from the
tower. That being sad it’s still possible to model τ(V, TiV

) as function of the distance
victim-tower

τ(V, TiV
) = σs(V, TiV

) + τ̃(V, TiV
) + σr(V, TiV

) =

= σs(V, TiV
) + d(V, TiV

)
c

+ σr(V, TiV
) .

notice that exists and is unique TiV
because of A.1. We didn’t consider this model

explicitly in the code, but as we did our numerical solution, and our measurements,
it would fit also this more general scenario.

A.2 The model with the least measurement complexity
We want to a different algorithm to measure τ(Ti, Tj), where Ti, Tj are two dif-
ferent towers, in order to reduce the complexity of the measurements described in
subsection 4.1. We assume all the axioms in subsection 3.1 and we add the following

•
τ(Ti, Tj) = τ(Ti, N) + τ(N, Tj) .

•
τ(Ti, Tj) = τ(Tj, Ti) .

This allows for a great improvement in complexity of the measurements of the cou-
ples of towers, because just one attacker can measure, for every i ∈ {1, . . . , nt}, the
time τ(Ti, Ti), that is

τ(Ti, Ti) = τ(Ti, N) + τ(N, Ti) ,

τ(Tj, Tj) = τ(Tj, N) + τ(N, Tj) ,

then

τ(Ti, Ti) + τ(Tj, Tj) = τ(Ti, N) + τ(N, Ti) + τ(Tj, N) + τ(N, Tj) =
= τ(Ti, Tj) + τ(Tj, Ti) = 2τ(Ti, Tj)

and the attacker can get all the couples τ(Ti, Tj) with nt steps.
But we can’t apply TDoA in this scenario, in fact

τ(V, Ai) = τ(V, TiV
) + τ(TiV

, TAi
) + τ(TAi

, Ai) ,

then

τ(V, Ai) − τ(V, Aj) = τ(V, TiV
) + τ(TiV

, TAi
) + τ(TAi

, Ai) − τ(V, TiV
) − τ(TiV

, TAj
) − τ(TAj

, Aj) =
= τ(TiV

, TAi
) − τ(TiV

, TAj
) + τ(TAi

, Ai) − τ(TAj
, Aj) =

= τ(TiV
, N) + τ(N, TAi

) − τ(TiV
, N) − τ(N, TAj

) + τ(TAi
, Ai) − τ(TAj

, Aj) =
= τ(N, TAi

) − τ(N, TAj
) + τ(TAi

, Ai) − τ(TAj
, Aj) ,

doesn’t depend at all on the position of the victim.
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